2015-06-28 12:11:38 +0000 2015-06-28 12:11:38 +0000
20
20

Hoe kun je een vierkant maken zonder vierkant?

Er zijn veel tutorials over het maken van een vierkant om te controleren of hoeken 90 graden zijn, maar ze vereisen allemaal dat je een vierkant gebruikt om te controleren.

Hoe kun je dus een vierkant maken, zonder een vierkant te gebruiken? Hoe zijn ze oorspronkelijk gemaakt als de nauwkeurigheid goed moest zijn, maar moderne meet- en fabricagemethoden waren niet beschikbaar?

Ik begin net met houtbewerking, en omdat ik nog geen project heb dat ik wil voltooien, ben ik geïnteresseerd in het maken van veel van de gereedschappen die ik zou gebruiken als onderdeel van het leerproces (mallets, vierkanten, markeermeters, etc.). ).

Budget is erg krap, maar ik vind het niet erg om stapsgewijs naar het einddoel toe te gaan, zoals het maken van een net-about-goed- genoeg bankje waarop een betere kan worden gebouwd. Ik heb veel Paul Sellers Youtube video’s bekeken en ze hebben me aangespoord.

Antwoorden (9)

14
14
14
2015-06-28 12:36:40 +0000

Nou, om te beginnen zijn de huidige vierkanten echt vrij goedkoop en het zou niet veel meer kosten dan de materialen als je het van metaal gaat maken.

Echter, als je een rechthoek hebt met de tegenoverliggende zijden dezelfde lengte, dan is het meten van de afstand tussen de tegenoverliggende hoeken de manier om te gaan. Als beide metingen gelijk zijn, zijn alle hoeken 90 graden.

10
10
10
2015-06-28 12:32:37 +0000

Hoe kun je dan een vierkant maken, zonder een vierkant te gebruiken? Hoe werden ze oorspronkelijk gemaakt als de nauwkeurigheid goed moest zijn, maar moderne meet- en fabricagemethoden waren niet beschikbaar.

Touw, en Pythagoras driehoek.

Lang geleden werd de Grote Piramide van Gizeh gebouwd. Dit was ver voor een modern, erkend systeem van het uitwerken van een vierkant - en toch is het vierkant .

We weten ook dit, de stelling van Pythagoras:

Dus, als je een driehoek maakt die randen heeft van lengte 3, 4 en 5 kun je een rechte hoek maken.

Hoe kunnen ze een driehoek als deze maken? Bind 12 knopen in een stuk touw, op gelijke afstand:

en maak er een driehoek van:

en dat geeft een rechte hoek.

Budget is erg krap, maar ik vind stappen naar het einddoel niet erg.

Ik neem aan dat je een stukje papier bij de hand hebt? Als je denkt dat dat valsspelen is, kun je een liniaal gebruiken om die driehoek te tekenen, of hem zelf maken met touwtjes.

9
9
9
2015-06-28 18:39:36 +0000

Hoe kun je een vierkant maken, zonder een vierkant te gebruiken?

Er zijn twee zeer eenvoudige methoden, de eerste is gebaseerd op meting, de tweede is empirisch.

Als er een nauwkeurige meting beschikbaar is, kun je vertrouwen op de 3-4-5 regel, waarnaar al wordt verwezen in de antwoorden die je hebt ontvangen.

Ik heb toevallig net een nauwkeurige pocket try square gemaakt met deze methode:

Montage van de onderdelen droog Ik markeerde 6cm over de korte arm (de voorraad) en 8cm op het blad. Daarna heb ik lijm aangebracht en het mes in de kolf gestoken en licht geklemd, de positie aangepast tot ik 10cm precies tussen de twee merktekens heb gemeten en deze heb laten liggen totdat de lijm zich had ingesteld.

Nadat de lijm hard was heb ik door de verbinding geboord voor drie pinnen om de verbinding goed vast te zetten. Ik heb hier koper gebruikt, maar ook andere metalen kunnen worden gebruikt (zelfs zacht staal, bijv. afkomstig van paperclips of basisdraadnagels) en indien gewenst kunnen houten deuvels worden gebruikt in plaats van metaal. Er is geen significant verschil in sterkte of stabiliteit voor een stuk als dit dat met hout over metaal gaat, ik heb het koper puur voor het uiterlijk gebruikt.

De tweede methode kan alleen gebruikt worden als je een lang genoeg werkend venster op de gebruikte lijm hebt, of je lijmt niet en houdt alleen het blad in de voorraad (bijv. door klemkracht) en kan dan de positie ervan vergrendelen met pennen, spijkers of schroeven zonder dat de onderdelen verschuiven. Wat u wel doet is de kwadratische lijn die door het probeervierkant _ tegen zichzelf_ wordt getekend direct vergelijken. Werkend vanaf een perfect vlakke rand, als er eenmaal geen discrepantie is tussen de vierkante lijn die met het try-carré getrokken wordt en vervolgens omgedraaid wordt heb je een perfecte 90° hoek:

Ik begin net met houtbewerking, en aangezien ik nog geen project heb dat ik wil voltooien, ben ik geïnteresseerd in het maken van veel van de gereedschappen die ik zou gebruiken als onderdeel van het leerproces (mallets, vierkanten, markeerlijnen, etc).

Dit is een uitstekend idee en je zult veel leren door dit te doen, naast het maken van een groot aantal nuttige hulpmiddelen, mallen en accessoires in het proces natuurlijk. Stel zeker nog meer vragen als je input wilt over andere dingen die je misschien wilt bouwen.

Hier is een bestaande vraag over een die je misschien wel informatief vindt: Wat is een bankhaak? ](https://woodworking.stackexchange.com/questions/1321/whats-a-bench-hook)

7
7
7
2015-06-29 19:22:20 +0000

Als je rechte lijnen kunt tekenen, kun je een perfecte rechte hoek maken met behulp van een kompas - zie dit eenvoudige diagram:

Teken rechte lijn (1), dan delen van een cirkel (2) en (3) - zolang ze gecentreerd zijn op dezelfde lijn en elkaar overlappen, maakt het niet uit wat hun exacte afstand is. Verbind de twee punten A en B waar ze elkaar snijden met de rechte lijn (4).

Je hebt nu twee lijnen in een perfecte rechte hoek… en je zou ze moeten kunnen gebruiken als referentie om een rechte lijn te maken.

Een nauwkeurige cirkel tekenen is zo eenvoudig als een speldje in het midden zetten, een touwtje met een lus aan elk uiteinde met een lusje rond de speld en het andere rond de punt van een potlood. Hoe groter de schaal waarop je dit doet, hoe kleiner de fout zal zijn.

6
6
6
2015-06-28 16:17:33 +0000

Ik begin net met houtbewerking, en omdat ik nog geen project heb dat ik wil voltooien, ben ik geïnteresseerd in het maken van veel van de gereedschappen die ik zou gebruiken als onderdeel van het leerproces (mallets, vierkanten, markeermeter etc).

Zo leer ik houtbewerking, en uiteindelijk ook metaalbewerking. Het is een goede manier om te gaan. Pleinen bouwen is een leuk projectje.

Hoe kun je een vierkant maken, zonder een vierkant te gebruiken?

Je hebt gelijk dat er hier in eerste instantie een kip-en-ei probleem lijkt te zijn.

Het is mogelijk om een nauwkeurig vierkant te maken zonder een nauwkeurig vierkant te hebben om het te controleren, maar je hebt dingen nodig die recht zijn.

Stel dat je twee stukken hout kunt krijgen die minstens één vlakke, rechte kant hebben. Dat zullen de buitenzijden van je vierkant zijn. Gebruik één van de stukken om een rechte horizontale lijn te trekken op iets wat plat is.

Verbind de twee stukken tijdelijk met elkaar zodat ze nog steeds ten opzichte van elkaar kunnen worden gedraaid – zoals, een enkele schroef er doorheen steken, of een enkele deuvel, of wat dan ook. Haal ze zo vierkant mogelijk. Leg dan een kant langs de lijn die je net hebt getekend met het vierkant dat is gerangschikt zoals de letter L, en gebruik je nieuwe vierkant om de loodrechte lijn te tekenen. Nu klap het geheel om, zodat het nu een achterwaartse L is, en probeer exact dezelfde loodrechte lijn te tekenen. Als het vierkantje nauwkeurig is, zullen de loodlijnen samenvallen. Als dat niet zo is, kun je schatten hoe ver je vierkant uit het vierkant is, het aanpassen, en het opnieuw proberen.

Blijf dat doen totdat je iets krijgt dat zo dicht bij het vierkant is als je wilt, en zet een ander bevestigingsmiddel in het vierkant zodat het niet meer kan draaien, en hé, je hebt een nauwkeurig vierkant opgebouwd uit alleen een nauwkeurige rechte lijn.

Nu is het natuurlijk de vraag “hoe produceer ik een nauwkeurige rechte lijn? Maar dat is een andere vraag.

Hoe werden ze oorspronkelijk gemaakt als de nauwkeurigheid goed moest zijn, maar moderne meet- en fabricagemethoden waren niet beschikbaar.

Je zegt niet hoe ver terug in de geschiedenis je wilt gaan. De manieren waarop de oude Egyptenaren ervoor zorgden dat hun bouwstenen vierkant waren, zijn nogal verschillend van de manieren waarop middeleeuwse timmerlieden vierkante gebouwen maakten, en die zijn nogal verschillend van de technieken die werden gebruikt om vierkante, nauwkeurige werktuigmachines te bouwen tijdens de industriële revolutie. Maak uw vraag nauwkeuriger als u geïnteresseerd bent in de geschiedenis van de gereedschapsbouw.

Ik heb veel Paul Sellers youtube video’s bekeken en ze hebben me aangespoord.

woodgears.ca is ook een goede site voor dit soort dingen; er zijn video’s daar over hoe je je eigen probeer vierkanten te maken, vierkanten inlijsten, en ga zo maar door.

6
6
6
2015-07-01 07:09:46 +0000

Als je wilt zien hoe het 100 jaar geleden werd gedaan zonder chique moderne hulpmiddelen moet je echt beginnen met “The Woodwrights Shop” met Roy Underhill het is op PBS en heeft veel inhoud beschikbaar voor streaming.

Voor uw specifieke antwoord op hoe je een vierkant “vierkant” Roy toont een heel eenvoudige manier in de aflevering “Try Square with Christopher Schwarz” http://video. pbs.org/video/2365021524/ Het vierkant zelf is van hout gemaakt, maar het “Truing” concept dat om 23:07 (mm:ss) wordt getoond, kan op elke 2 stukken hout worden toegepast op ongeveer 90 graden van elkaar.

In zijn eenvoudigste vorm is het op de rand van een tafel te tillen en een potloodlijn te tekenen. Draai het vierkantje om om te zien hoe ver weg het was, gebruik een vlak of een beitel om net genoeg hout te verwijderen om het dichterbij te krijgen. Vergeet niet dat u slechts ½ van het zichtbare verschil hoeft te verwijderen. Draai het dan om en teken een andere potloodlijn, enz. Totdat het zo nauwkeurig is als je wilt.

NO MATH!!! Yeah!

4
4
4
2015-06-28 12:31:01 +0000

Een eenvoudige manier om dit te meten is door gebruik te maken van de stelling van Pythagoras (A^2 + B^2 = C^2 voor een rechtse driehoek). Als je meet voor 3, 4 en 5 (sinds 9 + 16 = 25) kun je gemakkelijk een perfecte rechtse driehoek markeren. Je kunt elke meting gebruiken (3 inch, 30 cm, 15 cm (die 3 * 5 zijn), etc.). Dit geeft je een hoek van 90 graden. Meet vanaf daar gewoon twee kanten die even lang zijn en herhaal.

Maar ik stel voor om een try-square of ander dergelijk gereedschap te kopen. Ze zijn nauwkeurig, niet te duur en zeer nuttig.

2
2
2
2015-07-06 19:05:37 +0000

Ik hou van Roy Underhill. Ik heb die aflevering niet gezien, maar als je een zelfgemaakt vierkant wilt controleren op haaksheid, lijkt het me het gemakkelijkst om vier stukken materiaal te nemen die hetzelfde zijn, bijvoorbeeld 4 6" secties vrije verfroerders uit je lokale grote dozenwinkel, ze over elkaar te leggen in een vierkant, een spijker door elke hoek te zetten en het frame te verschuiven tot de diagonalen hetzelfde meten. In het timmerwerk maak je de dingen op dezelfde manier vierkant. Als je wilt weten of iets vierkant is, meet je de diagonalen op en past je ze aan tot ze hetzelfde zijn. Als ze dat zijn, is het vierkant. Je zou dit kunnen doen met de eerder genoemde verfroerders of iets van dezelfde breedte/diepte/hoogte en als het vierkant is, zou je je zelfgemaakte vierkant er tegenaan kunnen zetten. Er komt geen wiskunde aan te pas.

-6
-6
-6
2016-06-18 23:52:08 +0000

Ik denk dat het antwoord dat je zoekt gewoon dit is. Een of andere briljante wiskundige/astronoom heeft heel lang geleden bedacht dat de zon elke dag rond het middaguur rond de evenaar direct op een plek op de Aarde zal schijnen. Als dit gebeurt. Een recht stokje dat loodrecht op de vlakke grond wordt geplaatst zal GEEN schaduw veroorzaken. Want de schaduw zit precies in het gat waarin het stokje is ingebracht. Als dit gebeurt met een stok en een ondiepe plas water is het resultaat een perfect rechte hoek ten opzichte van het wateroppervlak en de rand van de stok.